I socyanide migration from an axial to an equatorial position in the synthesis of octahedral cationic carbonyl complexes of manganese(I) containing nitrogen donor chelate ligands

F.J. Garcia Alonso, V. Riera
Departamento de Quimica Organometálica, Universidnd de Oviedo, 33071 Oviedo (Spain)
and M. Vivanco
Departamento de Quimica Inorgánica, Universidad de Valladolid, 4700.5 Valladolid (Spain)
(Received May 23rd, 1990)

Abstract

Several manganese carbonyl complexes of the type $\left[\mathrm{Mn}(\mathrm{CO})_{m}\left(\mathrm{CN}^{t} \mathrm{Bu}\right)_{n}(\mathrm{~L})_{p}(\mathrm{~L}-\right.$ $\mathrm{L}) \mathrm{ClO}_{4}\left(\mathrm{~m}+n+p=4 ; m=\mathrm{I}-3 ; n=\mathrm{I}-3 ; p=0,1 ; \mathrm{L}=\mathrm{P}(\mathrm{OMe})_{3}, \mathrm{CNPh} ; \mathrm{L}-\mathrm{L}=\right.$ 2,2'-bipiridine (bipy), 1,10-phenantroline @hen), bis(t-butyl)-1,4-diazabuta-2,3-di-ene('Bu-DAB), $\mathrm{N}, \mathrm{N}, \mathrm{N}^{\prime}, \mathrm{N}$ '-tetramethylethylendiamine (tmed)) have been pre pared starting either from fac-[$\left.\mathrm{Mn}(\mathrm{CO})_{3}\left(\mathrm{CN}^{\mathrm{t}} \mathrm{Bu}\right)(\mathrm{L}-\mathrm{L})\right] \mathrm{ClO}_{4}$ or fac- $\left[\mathrm{Mn}(\mathrm{CO})_{3}\{\mathrm{P}\right.$ -$\left.\left.(\mathrm{OMe})_{3}\right\}(\mathrm{L}-\mathrm{L})\right] \mathrm{ClO}_{4}$ and using ONMe_{3} as decarbonylating agent. The stereochemistry of the substitution reactions products is discussed in terms of the nature of the possible intermediates.

Introduction

The reaction of the tricarbonyl complex fac-[$\mathrm{Mn}(\mathrm{CO})_{3}\left\{\mathrm{P}(\mathrm{OMe})_{3}\right\}$ (phen) $]_{\mathrm{ClO}}^{4} 4$ with ONMe_{3} and $\mathrm{P}(\mathrm{OMe})_{3}$ at room temperature leads to the dicarbonyl cis, trans$\left[\mathrm{Mn}(\mathrm{CO})_{2}\left(\mathrm{P}(\mathrm{OMe})_{3}\right\}_{2}\right.$ (phen)]ClO${ }_{4}[1]$ (Eq. a), which had been reported previously [2]. However, under the same conditions the isocyanide derivatives fac-$\left[\mathrm{Mn}(\mathrm{CO})_{3}(\mathrm{CNR})(\mathrm{N}-\mathrm{N})\right] \mathrm{ClO}_{4},(\mathrm{~N}-\mathrm{N}=$ bipy, phen) were found to react with CNR in presence of ONMe_{3} to give the dicarbonyl cis, cis-[Mn(CO) $\left.\mathbf{2}_{2}(\mathrm{CNR})_{2}(\mathrm{~N}-\mathrm{N})\right] \mathrm{ClO}_{4}$ [3]. Moreover, the complex fac-[$\left.\mathrm{Mn}(\mathrm{CO})_{3}\left(\mathrm{CN}^{t} \mathrm{Bu}\right)(\mathrm{phen})\right] \mathrm{ClO}_{4}$ is known to react with ONMe_{3} and subsequently with CNPh or CO to give cis, cis- $\left[\mathrm{Mn}(\mathrm{CO})_{2}(\mathrm{CNPh})\right.$ $\left(\mathrm{CN}^{t} \mathrm{Bu}\right)($ phen $\left.)\right] \mathrm{ClO}_{4}$ or $m e r-\left[\mathrm{Mn}(\mathrm{CO})_{3}\left(\mathrm{CN}^{t} \mathrm{Bu}\right)(\right.$ phen $\left.)\right] \mathrm{ClO}_{4}$, in which the $\mathrm{CN}^{t} \mathrm{Bu}$ ligands occupy equatorial positions (Eq. b) [3,4].

In order to investigate the stereochemical aspects of these reactions further we have carried out some aditional experiments, the results of which are presented here. A preliminary account has appeared [5].

Results and discussion

The reaction of $f a c-\left[\mathrm{Mn}(\mathrm{CO})_{3}\left(\mathrm{CN}^{t} \mathrm{Bu}\right)(\mathrm{N}-\mathrm{N})\right] \mathrm{ClO}_{4}(\mathrm{~N}-\mathrm{N}=$ bipy (la) and phen (lb)) with an excess of ONMe_{3} in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at room temperature led to cis$\left[\mathrm{Mn}(\mathrm{CO})_{2}\left(\mathrm{CN}^{\mathrm{t}} \mathrm{Bu}\right)\left(\mathrm{NMe}_{3}\right)(\mathrm{N}-\mathrm{N})\right] \mathrm{ClO}_{4}(\mathbf{2})$ [3] (reaction i in Scheme 1) (the possibility of a partial substiution of the NMe_{3} ligand in 2 by $\mathbf{O N M e}_{3}$ could not be completely excluded [3]). Although compounds 2 could not be isolated in a pure state, their stereochemistry is suggested to be as shown in Scheme 1, in accordance

(5)

Scheme1. $N-N=$ bipy or phen; (i) ONMe_{3}; (ii) CO , (iii) CNR; (iv) $\mathbf{P (O M e)}$; (v) ONMe_{3} and CNPh in refluxing $\mathrm{CH}_{2} \mathrm{Cl}_{2}$

Table 1
Melting points, eonductivities, and analytical data for the new compounds

Compound	$\begin{aligned} & \text { M.p. }^{a} \\ & \left({ }^{\circ} \mathrm{C}\right) \end{aligned}$	$\begin{aligned} & \Lambda_{\mathrm{M}}{ }^{b} \\ & \left(\mathrm{~S} \mathrm{~cm}^{2}\right. \\ & \left.\mathrm{mol}^{-1}\right) \end{aligned}$	Analysis [Found (calculated)(\%)]		
			C	H	N
cis-[$\mathrm{Mn}(\mathrm{CO})_{2}\left\{\mathrm{P}(\mathrm{OMe})_{3}\right\}\left(\mathrm{CN}^{\mathrm{t}} \mathrm{Bu}\right)($ bipy $\left.)\right] \mathrm{ClO}_{4}(5 \mathrm{sa})$	137	146	41.3	4.6	7.2
			44.2)	(4.3	(7.3)
cis-[$\left.\mathrm{Mn}(\mathrm{CO})_{2}\left(\mathrm{P}(\mathrm{OMe})_{3}\right\}\left(\mathrm{CN}^{\mathbf{t}} \mathrm{Bu}\right)(\mathrm{phen})\right] \mathrm{ClO}_{4}(\mathbf{5 h})$	141	140	(44.2)	(4.4)	6.9
					(7.0)
cis-[$\left.\mathrm{Mn}(\mathrm{CO})_{2}\left(\mathrm{CN}^{\text {t }} \mathrm{Bu}\right)\left(\mathrm{P}(\mathrm{OMe})_{3}\right\}(\mathrm{bipy})\right] \mathrm{ClO}_{4}(6 \mathrm{a})$	180	136	41.4	4.6	7.1
			(41.8)	(4.6)	(7.3)
cis-[$\left.\mathrm{Mn}(\mathrm{CO})_{2}\left(\mathrm{CN}^{\mathrm{t}} \mathrm{Bu}\right)\left\{\mathrm{P}(\mathrm{OMe})_{3}\right\}(\mathrm{phen})\right] \mathrm{ClO}_{4}(6 \mathrm{~b})$	179	138	44.1	4.4	7.1
			(44.2)	(4.4)	(7.0)
cis-[$\left.\mathrm{Mn}(\mathrm{CO})(\mathrm{CNPh})\left(\mathrm{CN}{ }^{\text { }} \mathrm{Bu}\right)_{2}(\mathrm{bipy})\right] \mathrm{ClO}_{4}(7 \mathrm{a})$	148	144	54.6	5.0	11.5
cis-[$\left.\mathrm{Mn}(\mathrm{CO})(\mathrm{CNPh})\left(\mathrm{CN}^{\mathbf{t}} \mathrm{Bu}\right)_{2}(\mathrm{phen})\right] \mathrm{ClO}_{4}(\mathbf{7})$	150	143	56.4	4.9	11.4
			(57.0)	(4.9)	(11.1)
$f a c-\left[\mathrm{Mn}(\mathrm{CO})_{3}\left(\mathrm{CN}^{\mathrm{t}} \mathrm{Bu}\right)\left({ }^{\mathbf{~}} \mathrm{Bu}-\mathrm{DAB}\right)\right] \mathrm{ClO}_{4}(8 \mathrm{sa})$	165	140	43.6	6.1	8.3
			(44.1)	(6.0)	(8.6)
$\mathrm{fac}-\left[\mathrm{Mn}(\mathrm{CO})_{3}\left(\mathrm{CN}^{t} \mathrm{Bu}\right)(\right.$ tmed $\left.)\right] \mathrm{ClO}_{4}(8 \mathrm{~b})$	115	140	38.1	5.8	9.5
			(38.4)	(5.8)	(9.6)
$m e r-\left[\mathrm{Mn}(\mathrm{CO})_{3}\left(\mathrm{CN}^{\mathrm{t}} \mathrm{Bu}\right)\left({ }^{\text {t }} \mathrm{Bu}-\mathrm{DAB}\right)\right] \mathrm{ClO}_{4}(10 a)$		141	43.7	6.1	8.5
			(44.1)	(6.0)	(8.6)
cis, cis-[$\left.\mathrm{Mn}(\mathrm{CO})_{2}\left(\mathrm{CN}^{1} \mathrm{Bu}\right)_{2}\left({ }^{1} \mathrm{Bu}-\mathrm{DAB}\right)\right] \mathrm{ClO}_{4}$ (lla)	160	138	48.2	7.2	10.2
			(48.5)	(7.0)	(10.3)
cis,cis-[$\mathrm{Mn}(\mathrm{CO})_{2}\left(\mathrm{CN}^{\mathrm{t}} \mathrm{Bu}\right)_{2}($ tmed $\left.)\right] \mathrm{ClO}_{4}$ (IIb)	173	142	43.2	7.0	11.6
			(43.9)	(6.9)	(11.4)
cis, trans-[$\left.\mathrm{Mn}(\mathrm{CO})_{2}\left(\mathrm{CN}^{t} \mathrm{Bu}\right)_{2}\left({ }^{\text {(}} \mathrm{Bu}-\mathrm{DAB}\right)\right] \mathrm{ClO}_{4}(12 \mathrm{a})$	204	138	48.6	7.4	10.2
			(48.5)	(7.0)	(10.3)
cis, trans $-\left[\mathrm{Mn}(\mathrm{CO})_{2}\left(\mathrm{CN}^{\text {t }} \mathrm{Bu}\right)_{2}(\right.$ tmed $\left.)\right] \mathrm{ClO}_{4}(12 \mathrm{~b})$	169	144	43.2	6.9	11.3
			(43.8)	(6.9)	(11.4)
$f a c-\left[\mathrm{Mn}(\mathrm{CO})\left(\mathrm{CN}^{t} \mathrm{Bu}\right)_{3}\left({ }^{\mathbf{t}} \mathrm{Bu}-\mathrm{DAB}\right)\right] \mathrm{ClO}_{4}(13 \mathrm{a})$	134	134	51.2	7.4	11.2
			(52.0)	(7.9)	(11.7)
$\mathrm{fac}-\left[\mathrm{Mn}(\mathrm{CO})\left(\mathrm{CN}^{\mathrm{t}} \mathrm{Bu}\right)_{3}(\mathrm{tmed})\right] \mathrm{ClO}_{4}(\mathbf{1 3 b})$	d	142	47.8	8.0	12.7
			(48.2)	(7.9)	(12.8)
$m e r-\left[\mathrm{Mn}(\mathrm{CO})\left(\mathrm{CN}^{t} \mathrm{Bu}\right)_{3}\left({ }^{\prime} \mathrm{Bu}-\mathrm{DAB}\right)\right] \mathrm{ClO}_{4}(14 \mathrm{a})$	158	144	52.3	1.8	11.7
			(52.0)	(7.9)	(11.7)
$m e r-\left[\mathrm{Mn}(\mathrm{CO})\left(\mathrm{CN}^{\mathbf{t}} \mathrm{Bu}\right)_{3}(\right.$ tmed $\left.)\right] \mathrm{ClO}_{4}(14 \mathrm{~b})$	133	140	48.1	8.1	12.9
			(48.2)	(7.9)	(12.8)

$\overline{a^{a}}$ With decomposition. ${ }^{b}$ Measured in $5 \times 10^{-4} M$, aeetone solution at $25{ }^{\circ} \mathrm{C} .{ }^{\boldsymbol{c}}$ It isomerixes to $8 \mathrm{8a} .{ }^{d} \mathrm{It}$ isomerixes to 14b.
with the spectroscopic data for cis-[$\left.\mathrm{Mn}(\mathrm{CO})_{2}\left(\mathrm{CN}^{\mathrm{t}} \mathrm{Bu}\right)\left(\mathrm{NMe}_{3}\right)(\mathrm{bipy})\right] \mathrm{ClO}_{4}(2 \mathrm{a})$ shown in Table 2. Thus, the ${ }^{1}$ H N M R spectrum of 2 a exhibits a peak at 1.65 ppm *, which indicates that the $\mathrm{CN}^{\mathrm{t}} \mathrm{Bu}$ ligand occupies an equatorial position. The assignment is consistent with the data in Table 3, which show a correlation between the coordina-

[^0]Table 2
Spectroscopic data for the new compounds

Compound	$\mathbf{I R}^{\text {a }}$ ($\mathrm{cm}{ }^{-}$)		${ }^{\mathbf{1}} \mathbf{H} \mathrm{NMR}^{\boldsymbol{b}}$ (6 in ppm, \boldsymbol{J} in Hz)	
	$\boldsymbol{\nu}(\mathrm{CN})$	$\nu(\mathrm{CO})$	$\mathrm{CN}-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$	Other signals
2a	2130, m	1950. s	$1.65, \mathrm{~s}$	9.03, m; 8.63, m; 8.20, m: 8.00, m: 7.57. m (biep) . 2.90 (br, NMe_{3})
		1880, s		
5a	2134, s	1986, s	1.60 , s	9.00, m; 8.35, m; 8.10, m; 7.70, m; 7.47, m. (bipy). $3.41\left(\mathrm{~d}, \mathrm{P}\left(\mathrm{OCH}_{3}\right)_{3}, \mathrm{~J}(\mathrm{HP})=10\right.$)
		1914, s		
5b	2130, s	1982, s	1.65, s	9.34, m; 8.66, m; 8.20, m; 8.11, s; 7.88, m. (phen). $3.31\left(\mathrm{~d}, \mathbf{P}\left(\mathrm{OCH}_{3}\right)_{3}, J(\mathrm{HP})=10\right)$
		1910, s		
6 a	2168, m	1971, s	$1.23, \mathrm{~s}$	$9.0, \mathrm{~m} ; 8.74, \mathrm{~m} ; 8.22, \mathrm{~m} ; 7.54$, m. (bipy)$3.41\left(\mathrm{~d}, \mathrm{P}\left(\mathrm{OCH}_{3}\right)_{3}, J(\mathrm{HP})=10\right)$
		1904, s		
6 b	2157, m	1967, s	1.12, s	9.41, m; 8.77, m; $8.21 \mathrm{~s} ; 8.00$, m. (phen)$3.32\left(\mathrm{~d}, \mathbf{P}\left(\mathrm{OCH}_{3}\right)_{3}, \mathrm{~J}(\mathrm{HP})=10\right)$
		1900, s		
7 a	2152, s	1934, s	1.58, s	$\begin{aligned} & 8.93, \mathrm{~m} ; 8.37, \mathrm{~m} ; 8.08, \mathrm{~m} ; 7.45, \mathrm{~m} .(\mathrm{bipy}) \\ & 7.29(\mathrm{~m}, \mathrm{CNPh}) \end{aligned}$
	2105, s			
	2062, s			
7 b	2145, s	1929, s	1.62, s	$\begin{aligned} & 9.31, \mathrm{~m} ; 8.55, \mathrm{~m} ; 8.04, \mathrm{~s} ; 7.93, \mathrm{~m} . \text { (phen) } \\ & 7.30(\mathrm{~m}, \mathrm{CNPh}) \end{aligned}$
	$\begin{aligned} & 2097, \mathrm{~s} \\ & 2052, \mathrm{~s} \end{aligned}$			
$8 \mathbf{8}$	2198, m	2051, s	1.54, s	$\begin{aligned} & 162, \mathrm{~s},\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\mathrm{N}=\mathrm{CH}\right]_{2} \\ & 8.57, \mathrm{~s},\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\mathrm{N}=\mathrm{CH}\right]_{2} \end{aligned}$
		1975, s		
		1942, s		
8b	2188, m	2050, s	1.69, s	2.88, s, br; 2.96, s, br, (tmed)
		1960, s		
		1948, s		
10a	2152, m	2080, s	1.57, s	$\begin{aligned} & 1.60, \mathrm{~s} ; 1.61, \mathrm{~s}\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\mathrm{N}=\mathrm{CH}\right]_{2} \\ & 8.61, \mathrm{~s} ; 8.54, \mathrm{~s},\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\mathrm{N}=\mathrm{CH}\right]_{2} \end{aligned}$
		1999, s		
		1950, s		
11 a	$\begin{aligned} & 2183, \mathrm{~m} \\ & 2135, \mathrm{~s} \end{aligned}$	1982, s	$\begin{aligned} & 1.52, \mathrm{~s} \\ & 1.49, \mathrm{~s} \end{aligned}$	1.57, s, br, $\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\mathrm{N}=\mathrm{CH}\right]_{2}$ 8.52 , s; 8.46, s, $\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\mathrm{N}=\mathrm{CH}\right]_{2}$ 2.80 , m, (tmed)
		1918, s		
IIb	$\begin{aligned} & 2172, \mathrm{~m} \\ & 2132, \mathrm{~m} \end{aligned}$	1965, s	1.66, s	
		1907, s	1.48, s	
12a	2150, s	1970, s	1.42, s	$\begin{aligned} & 1.59, \mathrm{~s},\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\mathrm{N}=\mathrm{CH}\right]_{2} \\ & 8.56, \mathrm{~s},\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\mathrm{N}=\mathrm{CH}\right]_{2} \end{aligned}$
		1905, s		
12b	2128, s	1971, s	1.54, s	2.72, m, (tmed)
		1904, s		
13a		1927, vs	$\begin{aligned} & 1.49, s(18 \mathrm{H}) \\ & 1.46, \mathrm{~s}(9 \mathrm{H}) \end{aligned}$	$\begin{aligned} & 1.56, \mathrm{~s},\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\mathrm{N}=\mathrm{CH}\right]_{2} \\ & 8.43, \mathrm{~s},\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\mathrm{N}=\mathrm{CH}\right]_{2} \end{aligned}$
13b		1900, vs	$\begin{aligned} & 1.63, \mathrm{~s}(9 \mathrm{H}) \\ & 1.43, \mathrm{~s}(18 \mathrm{H}) \end{aligned}$	2.64, s, br; 2.74, s, br, (tmed)
14a		1891, s	$\begin{aligned} & 1.48, \mathbf{s}(9 \mathrm{H}) \\ & 1.40, \mathrm{~s}(18 \mathrm{H}) \end{aligned}$	$\begin{aligned} & 1.58, \mathrm{~s},\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\mathrm{N}=\mathrm{CH}\right]_{2} \\ & 8.50, \mathrm{~s} ; 8.46, \mathrm{~s},\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\mathrm{N}=\mathrm{CH}\right]_{2} \end{aligned}$
14b		1885, s	$\begin{aligned} & 1.54, \mathbf{s}(18 \mathrm{H}) \\ & 1.44, \mathbf{s}(9 \mathrm{H}) \end{aligned}$	2.76, s, br; 2.68 , s, br, (tmed)

$\overline{{ }^{a} \text { The IR spectra were recorded in } \mathbf{C H}_{2} \mathbf{C l}_{2} \text { solution. }{ }^{\boldsymbol{b}} \text { The }{ }^{\mathbf{l}} \mathbf{H} \text { NMR spectra were recorded in } \mathbf{C D C l}_{3}}$ solution.
tion positions of the $\mathrm{CN}^{\text {t }} \mathrm{Bu}$ ligands and the chemical shifts of their protons. In terms of the two-step mechanism proposed for the decarbonylating reactions promoted by $\mathrm{ONMe}_{3}[6]$, the stereochemistry of 2 suggests that the isocyanide

Table 3
Chemical shift of the t-butykcyanide protons

Compound	$\delta^{\text {a }}\left\{\mathrm{CN}-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right\}$		Reference
	cis to both N atoms	trans to a N atom	
fac-[$\left.\mathrm{Mn}(\mathrm{CO})_{3}\left(\mathrm{CN}^{t} \mathrm{Bu}\right)(\mathrm{bipy})\right] \mathrm{ClO}_{4}$	1.28		$3^{\text {b }}$
$f a c-\left[\mathrm{Mn}(\mathrm{CO})_{3}\left(\mathrm{CN}^{1} \mathrm{Bu}\right)(\mathrm{phen})\right] \mathrm{ClO}_{4}$	-1.18		3
$m e r-\left[\mathrm{Mn}(\mathrm{CO})_{3}\left(\mathrm{CN}^{\text {t }} \mathrm{Bu}\right)(\mathrm{bipy})\right] \mathrm{ClO}_{4}$		1.66	3
$m e r-\left[\mathrm{Mn}(\mathrm{CO})_{3}\left(\mathrm{CN}^{\dagger} \mathrm{Bu}\right)(\right.$ phen $\left.)\right] \mathrm{ClO}_{4}$		1.72	3
cis, trans-[$\left.\mathrm{Mn}(\mathrm{CO})_{2}\left(\mathrm{CN}^{4} \mathrm{Bu}\right)_{2}(\mathrm{bipy})\right] \mathrm{ClO}_{4}$	1.24		9
cis, trans-[$\mathrm{Mn}(\mathrm{CO})_{2}\left(\mathrm{CN}^{\prime} \mathrm{Bu}\right)_{2}($ phen $\left.)\right] \mathrm{ClO}_{4}$	1.12		9
cis,cis-[$\left.\mathrm{Mn}(\mathrm{CO})_{2}\left(\mathrm{CN}^{t} \mathrm{Bu}\right)_{2}(\mathrm{bipy})\right] \mathrm{ClO}_{4}$	1.26 (9H)	1.58 (9H)	3
cis, cis-[$\mathrm{Mn}(\mathrm{CO})_{2}\left(\mathrm{CN}^{t} \mathrm{Bu}\right)_{2}($ phen $\left.)\right] \mathrm{ClO}_{4}$	1.16 (9H)	1.65 (9H)	3
$f a c-\left[\mathrm{Mn}(\mathrm{CO})\left(\mathrm{CN}^{\dagger} \mathrm{Bu}\right)_{3}(\mathrm{bipy})\right] \mathrm{ClO}_{4}$	1.26 (9H)	1.54 (18H)	3
$\mathrm{fac}-\left[\mathrm{Mn}(\mathrm{CO})\left(\mathrm{CN}^{\mathrm{t}} \mathrm{Bu}\right)_{3}(\mathrm{phen})\right] \mathrm{ClO}_{4}$	1.20 (9H)	1.62 (18H)	3
$m e r-\left[\mathrm{Mn}(\mathrm{CO})\left(\mathrm{CN}^{4} \mathrm{Bu}\right)_{3}(\mathrm{bipy})\right] \mathrm{ClO}_{4}$	1.22 (18H)	1.58 (9H)	9
$m e r-\left[\mathrm{Mn}(\mathrm{CO})\left(\mathrm{CN}^{\prime} \mathrm{Bu}\right)_{3}(\mathrm{phen})\right]_{\mathrm{ClO}_{4}}$	1.18 (18H)	1.63 (9H)	9

${ }^{a}$ All the NMR spectra were recorded in CDCl_{3} solution. ${ }^{b}$ The reference 3 only includes the preparation of the compounds, the NMR data, however, have been obtained recently in order to make out this Table.
ligand migrates from an axial to an equatorial position in the square pyramid intermediate. This is in accord with the "site preference model" [7], which predicts that an isocyanide ligand (a weaker a-acceptor than CO) should prefer a basal position in the square pyramid intermediate. M oreover, assuming a dissociative pathway in the substitution of NMe_{3} in 2 , the formation of mer-tricarbonyl complexes 3 (ii in Scheme 1) and the cis, cis-dicarbonyl compounds 4 (iii in Scheme 1) [3] further supports the suggestion that there is a stable intermediate containing a basal isocyanide.

The NMe_{3} ligand in 2 can also be readily replaced by $\mathrm{P}(\mathrm{OMe})_{3}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at room temperature to give cis, cis-[$\left.\mathrm{Mn}(\mathrm{CO})_{2}\left(\mathrm{P}(\mathrm{OMe})_{3}\right\}(\mathrm{CNR})(\mathrm{N}-\mathrm{N})\right] \mathrm{ClO}_{4}(5)$ (iv in Scheme 1). Their analytical and spectroscopic data are collected in Tables 1 and 2. The peaks at 1.60 (5a) and $1.65 \mathrm{ppm}(5 \mathrm{~b})$ in the ${ }^{1} \mathrm{H}$ NMR spectra show that the CN ' Bu ligands are in equatorial positions, as in the starting complexes.

On the other hand, the dicarbonyls cis, trans-[$\left.\left.\mathrm{Mn}(\mathrm{CO})_{2}(\mathrm{CNR})\{\mathrm{P}) \mathrm{OMe}\right)_{3}\right\}(\mathrm{N}-$ $\mathrm{N}) \mathrm{ClO}_{4}(6)$ (isomers of 5) were obtained by adding ONMe_{3} and $\mathrm{CN}{ }^{\prime} \mathrm{Bu}$ to a solution of fac-[$\mathrm{Mn}(\mathrm{CO})_{3}\left\{\mathrm{P}(\mathrm{OMe})_{3}\right\}$ (bipy) $] \mathrm{ClO}_{4}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Their analytical and spectroscopic data are collected in Tables 1 and 2. In this case, the ${ }^{1}$ H NMR spectra show four groups of signals in the aromatic region, corresponding to equivalent chelated N atoms; the chemical shifts of the $\mathrm{CN}^{\mathrm{t}} \mathrm{Bu}$ protons (1.23 (6a) and 1.12 ppm (6b)) are in the range expected for axial CN'Bu ligands. The stereochemistry of 6 and 6 b indicates that, unlike isocyanides, the phosphites do not migrate in these substitution reactions.

The cis-isocyanide dicarbonyl complexes cis, cis-[$\left.\mathrm{Mn}(\mathrm{CO})_{2}\left(\mathrm{CN}^{\prime} \mathrm{Bu}\right)_{2}(\mathrm{~N}-\mathrm{N})\right] \mathrm{ClO}_{4}$ ($\mathrm{N}-\mathrm{N}=$ bipy or phen, (4)) were found to react with ONMe_{3} and CNPh in refluxing $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to yield fac-[$\left.\mathrm{Mn}(\mathrm{CO})(\mathrm{CNPh})\left(\mathrm{CN}^{\dagger} \mathrm{Bu}\right)_{2}(\mathrm{~N}-\mathrm{N})\right] \mathrm{ClO}_{4}(7)$ (v in Scheme 1). The stereochemistry of the monocarbonyl complexes 7 is suggested on the basis of their ${ }^{1} \mathrm{H}$ NMR spectra. Thus, the appearance of singlets at 1.58 (7 a) and 1.62 ppm (7b) indicate the presence of two equivalent equatorial terbutylisocyanides. On the other hand, the four groups of signals in the aromatic region indicate the equiv-

(10)

(13)
(11)

(14)
(12)

Scheme 2. $\mathbf{N}^{\prime}-\mathrm{N}^{\prime}={ }^{\text {t }} \mathrm{Bu}$-DAB or tmed; (vi) ONMe_{3}; (vii) CO; (viii) refluxing hexane for 10a, or stirring at room temperature for lob, (ix) $\mathrm{CN}^{\prime} \mathrm{Bu}$; (x) ONMe_{3} and $\mathrm{CN}^{\mathrm{t}} \mathrm{Bu}$; (xi) refluxing CHCl_{3}, only for 13 L
alence of the two N atoms in the chelates. The stereochemistry of 7a and 7b confirms that the isocyanide migration also takes place during the formation of the monocarbonyl compounds $\left[\mathrm{Mn}(\mathrm{CO})(\mathrm{CNR})_{3}(\mathrm{~N}-\mathrm{N})\right] \mathrm{ClO}_{4}$.

At this point, it seemed of interest to extend our study to other related carbonyl complexes, containing bis(t-butyl)-1,4-diazabuta-1,3-diene ('Bu-DAB), and N, N, N^{\prime}, N '-tetramethylethylendiamine (tmed) as nitrogen donor chelates.

The tricarbonyl complexes fac-[$\left.\mathrm{Mn}(\mathrm{CO})_{3}\left(\mathrm{CN}^{\mathbf{t}} \mathrm{Bu}\right)\left(\mathrm{N}^{\prime}-\mathrm{N}^{\prime}\right)\right] \mathrm{ClO}_{4}\left(\mathrm{~N}^{\prime}-\mathrm{N}^{\prime}={ }^{\mathbf{t}} \mathrm{Bu}\right.$ DAB (8a) and tmed (8b)), reacted in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ with ONMe_{3} in the absence of other ligands to give mainly the dicarbonyl derivatives of formula cis-[$\mathrm{Mn}(\mathrm{CO})_{2}\left(\mathrm{CN}^{t} \mathrm{Bu}\right)$ $\left.\left(\mathbf{N M e}_{3}\right)\left(\mathbf{N}^{\prime}-\mathbf{N}^{\prime}\right)\right] \mathrm{ClO}_{4}\left(\mathrm{~N}^{\prime}-\mathrm{N}^{\prime}={ }^{\prime} \mathrm{Bu}-\mathrm{DAB}\right.$ (9a) and tmed (9b)) (vi in Scheme 2) *. Because of the presence of an excess of ONMe_{3} and partial decomposition of the products, they could not be isolated and so have not been fully characterized. However, from their IR spectra $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{`} ; \boldsymbol{\nu}(\mathrm{CN})=2130 \mathrm{~s}, \nu(\mathrm{CO})=1945 \mathrm{~s}\right.$, $1876 \mathrm{~s},(9 \mathrm{a}) ; \boldsymbol{\nu}(\mathbf{C N})=2133 \mathrm{~s}, \boldsymbol{\nu}(\mathbf{C O})=1955 \mathbf{s}, 1866 \mathbf{s}(9 \mathbf{b}))$ it is clear that they contain an isocyanide ligand and a cis-dicarbonyl arrangement.

Irrespective of the stereochemistry of 9 , bubbling CO through a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solutions of this product gave the tricarbonyl complexes mer- $\left[\mathbf{M n}(\mathrm{CO})_{3}\left(\mathrm{CN}^{t} \mathrm{Bu}\right)\left(\mathrm{N}^{\prime}-\right.\right.$ $\left.\left.\mathbf{N}^{\prime}\right)\right]_{C l O}^{4}$ (10) (vii in Scheme 2). The complex 10a ($\mathrm{N}^{\prime}-\mathrm{N}^{\prime}=$ 'Bu-DAB), was fully characterized (see Tables 1 and 2), but complex 10b ($\mathrm{N}^{\prime}-\mathrm{N}^{\prime}=$ tmed) could not be isolated in a pure state because of its rapid isomerization to the corresponding fac-isomer $\mathbf{8 b}$ (viii in Scheme 2) and it was identified only by IR spectroscopy on the product of a reaction carried out at $0^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}-^{`} ; \boldsymbol{\nu}(\mathrm{CN})=2117 \mathrm{~s}, \boldsymbol{\nu}(\mathrm{CO})=\right.$ $1939 \mathrm{~s}, 1868 \mathrm{~s})$. The mer to fac isomerization also occurs in the case of the compound 10a, but only at the higher temperature of refluxing hexane.

[^1]While the reaction of $\boldsymbol{c i s}-\left[\mathrm{Mn}(\mathrm{CO})_{2}\left(\mathrm{CN}^{t} \mathrm{Bu}\right)\left(\mathrm{NMe}_{3}\right)(\mathrm{N}-\mathrm{N})\right] \mathrm{ClO}_{4}$ (2) with $\mathrm{CN}^{\prime} \mathrm{Bu}$ afforded cis, cis- $\left[\mathrm{Mn}(\mathrm{CO})_{2}\left(\mathrm{CN}^{\dagger} \mathrm{Bu}\right)_{2}(\mathrm{~N}-\mathrm{N})\right] \mathrm{ClO}_{4}$ (4) as a single product [3] (iii in Scheme 1), the reaction of 9 with $\mathrm{CN}^{\prime} \mathrm{Bu}$ in $\mathbf{C H}_{\mathbf{2}} \mathbf{C l}_{\mathbf{2}}$ at room temperature gave a mixture of two isomers cis, cis-[$\left.\mathrm{Mn}(\mathrm{CO})_{2}\left(\mathrm{CN}^{\dagger} \mathrm{Bu}\right)_{2}\left(\mathrm{~N}^{\prime}-\mathrm{N}^{\prime}\right)\right] \mathrm{ClO}_{4}(11)$ and cis, trans$\left[\mathrm{Mn}(\mathrm{CO})_{2}\left(\mathrm{CN}^{\mathbf{t}} \mathrm{Bu}\right)_{2}\left(\mathrm{~N}^{\prime}-\mathrm{N}^{\prime}\right)\right] \mathrm{ClO}_{4}(12)$ (ix in Scheme 2). These. were isolated by careful fractional crystallization from $\mathbf{C H}_{2} \mathrm{Cl}_{2} / \mathbf{E t O H}$ and fully characterized (Tables 1 and 2). The ${ }^{\mathbf{1}} \mathbf{H}$ NMR and IR spectra of the crude reaction mixture reveal that there is a preponderance of the cis,cis-complexes. In addition, we observed that the isomers 11 and 12 cannot be interconverted under the conditions in which they are generated. This could be an indication that the product 9 is itself a mixture of two isomers.

The results can be explained by assuming that two square-pyramidal intermediates exist in equilibrium in all substitution reactions involving complexes containing $\mathrm{N}^{\prime}-\mathrm{N}$ ' chelates, in contrast to the single pentacoordinate intermediate proposed for the analogous reactions involving bipy and phen complexes. The intermediate present in higher proportion (A) would have the isocyanide ligand in the base of the square-pyramid, while the other one (B) would have it in the apical position. Thus, in the reaction of 9 with CN ' Bu , the species \mathbf{A} would give 11 (the main product), whereas the intermediate \mathbf{B} would give 12 . In the reaction of 9 with CO, however, only the mer-tricarbonyl isomer 10 is formed indicating that the low concentration of CO forces the reaction to proceed only through the intermediate \mathbf{A}. Consistently, when 9 was reacted with a very dilute solution of CN ' Bu the proportion of the isomer 11 was higher than that obtained when a concentrated solution of the isocyanide was used.

The existence of two intermediates in equilibrium is also supported by the fact that the separate reactions of 8 and 10 with $\mathbf{O N M e}_{3}$ and CN ' Bu gave the same mixture of isomers (11 and 12). Furthermore, the proportion of the isomer 11 in the final mixture could be increased by raising the temperature in the reaction of 8 with $\mathbf{O N M e}_{3}$ and CN'Bu, suggesting that the ratio of the intermediates \mathbf{A} and \mathbf{B} is temperature dependent.

Again there is a marked contrast between the reactions of cis,cis- $\left[\mathrm{Mn}(\mathrm{CO})_{2}(\mathrm{CN}-\right.$ $\left.\left.{ }^{\mathrm{B}} \mathrm{Bu}\right)_{2}(\mathrm{~N}-\mathrm{N})\right] \mathrm{ClO}_{4}$ (4) and cis,cis-[$\left.\mathrm{Mn}(\mathrm{CO})_{2}\left(\mathrm{CN}^{\prime} \mathrm{Bu}\right)_{2}\left(\mathrm{~N}^{\prime}-\mathrm{N}^{\prime}\right)\right] \mathrm{ClO}_{4}$ (11) with ONMe_{3} and CNR. Thus while the former gave $\mathrm{fac}-\left[\mathrm{Mn}(\mathrm{CO})(\mathrm{CNR})_{3}(\mathrm{~N}-\mathrm{N})\right] \mathrm{ClO}_{4}$ (7) as single product [3] (v in Scheme 1), the latter gave a mixture of fac-[Mn$\left.(\mathrm{CO})\left(\mathrm{CN}^{\mathrm{t}} \mathrm{Bu}\right)_{3}\left(\mathrm{~N}^{\prime}-\mathrm{N}^{\prime}\right)\right] \mathrm{ClO}_{4}$ (13) and $\boldsymbol{m e r}-\left[\mathrm{Mn}(\mathrm{CO})\left(\mathrm{CN}^{\mathrm{t}} \mathrm{Bu}\right)_{3}\left(\mathrm{~N}^{\prime}-\mathrm{N}^{\prime}\right)\right] \mathrm{ClO}_{4}$ (14) (x in Scheme 2), which could be separated by fractional crystallization. Although the complex mer-[$\mathrm{Mn}(\mathrm{CO})\left(\mathrm{CN}^{\mathbf{t}} \mathrm{Bu}\right)_{3}($ tmed $\left.)\right] \mathrm{ClO}_{4}(14 b)$ always crystallizes contaminated with 13b, it could be prepared pure by heating the corresponding fac-isomer 13b in refluxing CHCl_{3} (xi in Scheme 2). In the substitution reactions involving complexes containing $\mathrm{N}^{\prime}-\mathrm{N}^{\prime}$ chelates, the formation of the mixture of 13 and 14 further supports the existence of two intermediates differing in the coordination position of the isocyanide ligand.

Experimental

All reactions were carried out under nitrogen, and except for those involving complexes containing tmed, in the dark. The IR spectra were recorded with Perkin-Elmer 599 and Perk\&Elmer 883 spectrometers, and calibrated by reference
to the 1602 cm-' band of the polystyrene. The NMR spectra were recorded on Varian FT-80 and Bruker AC 80 instruments, with TMS as internal reference. The compounds fac-[$\left.\mathrm{Mn}(\mathrm{CO})_{3}\left(\mathrm{CN}^{\mathrm{t}} \mathrm{Bu}\right)(\mathrm{N}-\mathrm{N})\right] \mathrm{ClO}_{4},(\mathrm{~N}-\mathrm{N}=$ bipy and phen) [3], cis, cis$\left[\mathrm{Mn}(\mathrm{CO})_{2}\left(\mathrm{CN}^{\prime} \mathrm{Bu}\right)_{2}(\mathrm{~N}-\mathrm{N})\right] \mathrm{ClO}_{4} \quad[3], \quad$ fac- $\left[\mathrm{Mn}(\mathrm{CO})_{3}\left\{\mathrm{P}(\mathrm{OMe})_{3}\right\}(\mathrm{N}-\mathrm{N})\right] \mathrm{ClO}_{4} \quad[2]$, $\left.f a c-\left[\mathrm{Mn}(\mathrm{CO})_{3}{ }^{(}{ }^{\mathrm{H}} \mathrm{Ru}-\mathrm{DAB}\right) \mathrm{Br}\right][10], \mathrm{ONMe}_{3}[11], \mathrm{CN}{ }^{\prime} \mathrm{Bu}$ [12], $\mathrm{CNPh}[12]$ and ${ }^{\mathrm{t}} \mathrm{Bu}-$ DAB [13] were prepared by published methods.

Preparation of cis,cis-[Mn(CO) $)_{2}\left\{\left(\mathrm{P}(\mathrm{OMe})_{3}\right\}\left(\mathrm{CN}^{t} \mathrm{Bu}\right)(\mathrm{N}-\mathrm{N})\right] \mathrm{ClO}_{4}(\mathrm{~N}-\mathrm{N}=$ bipy (5a), phen (5b))

A mixture of $f a c-\left[\mathrm{Mn}(\mathrm{CO})_{3}\left(\mathrm{CN}^{\mathrm{t}} \mathrm{Bu}\right)(\mathrm{N}-\mathrm{N})\right] \mathrm{ClO}_{4}(\mathbf{1})(0.63 \mathrm{mmol}), \mathrm{ONMe}_{3}(0.047$ $\mathrm{g}, 0.63 \mathrm{mmol})$ and $\mathbf{P}(\mathrm{OMe})_{3}\left(0.082 \mathrm{~cm}^{3}, 0.69 \mathrm{mmol}\right)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(40 \mathrm{~cm}^{3}\right)$ was stirred at room temperature for 1.5 h . The solution was evaporated to dryness, the residue washed with light petroleum, and the product crystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O}$ at $-20^{\circ} \mathrm{C}$ to give orange crystals. Yields 60% (5a) and $\mathbf{6 2 \%}$ (5b).

Preparation of cis,trans-[$\left.\mathrm{Mn}(\mathrm{CO})_{2}\left\{\mathrm{P}(\mathrm{OMe})_{3}\right\}\left(\mathrm{CN}^{t} \mathrm{Bu}\right)(\mathrm{N}-\mathrm{N})\right] \mathrm{ClO}_{4}(\mathrm{~N}-\mathrm{N}=$ bipy (6a), phen (6b))

To a solution of fac- $\left[\mathrm{Mn}(\mathrm{CO})_{3}\left\{\mathrm{P}(\mathrm{OMe})_{3}\right\}(\mathrm{N}-\mathrm{N})\right] \mathrm{ClO}_{\mathbf{4}}(0.58 \mathrm{mmol})$ in $\mathrm{CH}_{\mathbf{2}} \mathrm{Cl}_{2}$ ($40 \mathrm{~cm}^{3}$) were added $\mathbf{O N M e}_{3}(0.044 \mathrm{~g}, 0.58 \mathrm{mmol})$ and $\mathrm{CN}{ }^{\prime} \mathrm{Bu}(0.050 \mathrm{~g}, 0.60 \mathrm{mmol})$, and the mixture was stirred for 1 h . After evaporation of the solvent, the residue was washed with light petroleum to give a solid, which was recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ / EtOH to afford yellow orange crystals. Yields 65% (6a), and 63% (6b).

Preparation of $\left[\mathrm{Mn}(\mathrm{CO})\left(\mathrm{CN}^{t} \mathrm{Bu}\right)_{2}(\mathrm{CNPh})(\mathrm{N}-\mathrm{N})\right] \mathrm{ClO}_{4}(\mathrm{~N}-\mathrm{N}=$ bipy (7a), phen (76))
A mixture of cis, cis-[$\left.\mathrm{Mn}(\mathrm{CO})_{2}\left(\mathrm{CN}^{\mathrm{t}} \mathrm{Bu}\right)_{2}(\mathrm{~N}-\mathrm{N})\right] \mathrm{ClO}_{4},(0.47 \mathrm{mmol}), \mathrm{ONMe}_{3}(0.035$ $\mathrm{g}, 0.47 \mathrm{mmol})$ and $\mathrm{CNPh}(0.052 \mathrm{~g}, 0.50 \mathrm{mmol})$ was refluxed in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(40 \mathrm{~cm}^{3}\right)$ for 5 h . The liquid was evaporated off under vacuum and the residue washed with light petroleum. Recrystallization from $\mathbf{C H}_{2} \mathrm{Cl}_{2} / \mathrm{EtOH}$ gave dark red crystals. Yields 55% (7a) and 53\% (7b).

Preparation of fac-[$\mathrm{Mn}(\mathrm{CO})_{3}($ tmed $\left.) \mathrm{Br}\right]$

A solution of $\left[\mathrm{Mn}(\mathrm{CO})_{5} \mathrm{Br}\right](1 \mathrm{~g}, 3.64 \mathrm{mmol})$ and tmed $\left(0.6 \mathrm{~cm}^{3}, 3.97 \mathrm{mmol}\right)$ in hexane ($60 \mathrm{~cm}^{3}$) was refluxed for 30 min . The product separated out yellow solid. Yield 95%. M.p. 140° C. Anal. Found: C, 32.3; H, 4.9; N, 8.4. Calcd: C, 32.3; H, $4.8 ; \mathrm{N}, 8.4 \%$. IR spectra $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$, in $\left.\mathrm{cm}-{ }^{`}\right), \boldsymbol{\nu}(\mathbf{C O})=2039 \mathrm{~s}, 1935 \mathrm{~s}, 1898 \mathrm{~s} .{ }^{1} \mathbf{H}$ NMR spectra ($\mathrm{CDCl}_{3}, \boldsymbol{\delta}$ in ppm): $2.61\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 2.90\left(\mathrm{~s}, \mathrm{CH}_{3}\right), 2.96\left(\mathrm{~s}, \mathrm{CH}_{3}\right)$.

Preparation of fac-[$\left.\mathrm{Mn}(\mathrm{CO})_{3}\left(\mathrm{CN}^{t} \mathrm{Bu}\right)\left(N^{\prime}-\mathrm{N}^{\prime}\right)\right] \mathrm{ClO}_{4}\left(N^{\prime}-N^{\prime}=\right.$ 'Bu-DAB (8a) tmed

 (8b))A mixture of $f a c-\left[\mathrm{Mn}(\mathrm{CO})_{3}\left(\mathbf{N}^{\prime}-\mathbf{N}^{\prime}\right) \mathrm{Br}\right](0.77 \mathrm{mmol})$ and $\mathrm{Ag} \mathrm{ClO}{ }_{4}(0.177 \mathrm{~g}, 0.85$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(60 \mathrm{~cm}^{3}\right)$ was stirred for 1 h in the dark, then filtered to remove the AgBr . To the filtrate was added $\mathrm{CN}^{\prime} \mathrm{Bu}(0.071 \mathrm{~g}, 0.85 \mathrm{mmol})$, and the mixture was refluxed for 30 min . After removal of the solvent, the residue was washed with light petroleum to give a yellow solid. Yields 85% (8a) and 87% ($8 \mathbf{b}$).

Preparation of mer- $\left.\left[\mathrm{Mn}(\mathrm{CO})_{3}\left(\mathrm{CN}^{t} \mathrm{Bu}\right){ }^{(}{ }^{t} \mathrm{Bu}-\mathrm{DAB}\right)\right] \mathrm{ClO}_{4}(10 \mathrm{a})$

To a solution of $f a c-\left[\mathrm{Mn}(\mathrm{CO})_{3}(\mathrm{CNtBu})\left({ }^{\mathrm{t}} \mathrm{Bu}-\mathrm{DAB}\right)\right] \mathrm{ClO}_{4}(8 \mathrm{8a})(0.25 \mathrm{~g}, 0.51 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(40 \mathrm{~cm}^{3}\right)$ was added $\mathrm{ONMe}_{3}(0.096 \mathrm{~g}, 1.28 \mathrm{mmol})$, and the resulting
mixture was stirred for 5 mm . The solution was washed succesively with water to remove the excess of ONMe_{3}, dried over $\mathbf{M g S O}_{4}$, and filtered. CO was bubbled through the filtrate for 1 h . After removal of the solvent, the residual oil was washed with light petroleum to give a solid. Recrystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{\mathbf{2}} / \mathrm{Et}_{\mathbf{2}} \mathrm{O}$ at $-20^{\circ} \mathrm{C}$ affords yellow orange crystals. Yield 38%.

Preparation of cis,cis- $\left[\mathrm{Mn}(\mathrm{CO})_{2}\left(\mathrm{CN}^{t} \mathrm{Bu}\right)_{2}\left(\mathrm{~N}^{\prime}-\mathrm{N}^{\prime}\right)\right] \mathrm{ClO}_{4}\left(\mathrm{~N}^{\prime}-\mathrm{N}^{\prime}={ }^{t} \mathrm{Bu}-\mathrm{DAB}(11 \mathrm{a})\right.$, tmed (11b)) and cis,trans-[Mn(CO) $\left.2_{2}\left(\mathrm{CN}^{t} \mathrm{Bu}\right)_{2}\left(N^{\prime}-\mathrm{N}^{\prime}\right)\right] \mathrm{ClO}_{4}\left(N^{\prime}-N^{\prime}=' \boldsymbol{B} \boldsymbol{u}-\mathrm{DAB}\right.$ (12a), tmed (12b))

To a solution of $f a c-\left[\mathrm{Mn}(\mathrm{CO})_{3}\left(\mathrm{CN}^{t} \mathrm{Bu}\right)\left(\mathrm{N}^{\prime}-\mathbf{N}^{\prime}\right)\right] \mathrm{ClO}_{4}(8)(0.82 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $\left(40 \mathrm{~cm}^{3}\right)$ were added $\mathrm{ONMe}_{3}(0.061 \mathrm{~g}, 0.82 \mathrm{mmol})$ and CN ' $\mathrm{Bu}(0.136 \mathrm{~g}, 1.63 \mathrm{mmol})$, and the mixture was stirred at room temperature for 2 h ('Bu-DAB) or 5 h (tmed). After removal of the solvent, the residue was washed with light petroleum. Recrystallization of the crude product from $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOH}$ gave first the ci.s, trans-isomers 12, orange crystals of $\mathbf{1 2 a}$ (yield 15%) or yellow crystals of $\mathbf{1 2 b}$ (yield 19\%). Succesive recrystallizations afforded the cis,cis-isomers 11, red crystals of Ila (yield 32%) and yellow crystals of $\mathbf{1 1 b}$ (yield 53%).

Preparation of fac-[$\left.\mathrm{Mn}(\mathrm{CO})\left(\mathrm{CN}^{t} \mathrm{Bu}\right)_{3}\left({ }^{(} \mathrm{Bu}-\mathrm{DAB}\right)\right] \mathrm{ClO}_{4}(13 \mathrm{a})$ and mer- $[\mathrm{Mn}(\mathrm{CO})(\mathrm{CN}$ $\left.\left.{ }^{t} \mathrm{Bu}\right)_{3}\left({ }^{\prime} \mathrm{Bu}-\mathrm{DAB}\right)\right] \mathrm{ClO}_{4}(14 a)$

Although the complexes 13 and 14 could be obtained starting from the cis,cis$\left[\mathrm{Mn}(\mathrm{CO})_{2}\left(\mathrm{CN}^{\mathrm{t}} \mathrm{Bu}\right)_{2}\left(\mathrm{~N}^{\prime}-\mathrm{N}^{\prime}\right)\right] \mathrm{ClO}_{4}(\mathbf{1 1})$, it was more convenient to prepare them from $f a c-\left[\mathrm{Mn}(\mathrm{CO})_{3}\left(\mathrm{CN}^{t} \mathrm{Bu}\right)\left(\mathrm{N}^{\prime}-\mathrm{N}^{\prime}\right)\right] \mathrm{ClO}_{4}(8)$, since in this way the isolation of the dicarbonyl complexes 11 and 12 was avoided.
(A) From fac-[$\left.\mathrm{Mn}(\mathrm{CO})_{3}\left(\mathrm{CN}^{t} \mathrm{Bu}\right){ }^{\boldsymbol{t}}{ }^{(B u}-\mathrm{DAB}^{(1)}\right] \mathrm{ClO}_{4}(8 a)$. A mixture of fac$\left[\mathbf{M n}(\mathbf{C O})_{3}\left(\mathrm{CN}^{\mathrm{t}} \mathbf{B u}\right)\left({ }^{\mathbf{t}} \mathbf{B u}-\mathrm{DAB}\right)\right] \mathrm{ClO}_{\mathbf{4}} \mathbf{(8 a)}(0.25 \mathrm{~g}, 0.51 \mathrm{mmol}), \mathrm{ONMe}_{3},(0.096 \mathrm{~g}, 1.28$ mmol) and $\mathrm{CN} ' \mathrm{Bu}(0.127 \mathrm{~g}, 1.53 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(30 \mathrm{~cm}^{3}\right)$ was stirred at room temperature for 3 days. The liquid was evaporated to dryness and the residue was washed with light petroleum. Crystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O}$ at $-20^{\circ} \mathrm{C}$ gave first cis, trans-[$\left.\mathrm{Mn}(\mathrm{CO})_{2}\left(\mathrm{CN}{ }^{1} \mathrm{Bu}\right)_{2}\left({ }^{1} \mathrm{Bu}-\mathrm{DAB}\right)\right] \mathrm{ClO}_{4}$ (lla) (yield 20\%), and then, after addition of light petroleum, deep-red crystals of fac-[$\mathrm{Mn}(\mathrm{CO})\left(\mathrm{CN}^{\mathrm{t}} \mathrm{Bu}\right){ }_{3}\left({ }^{\mathrm{t}} \mathrm{Bu}-\right.$ $\mathrm{DAB}) \mathrm{ClO}_{4}$ (13a) (yield 40%), and finally deep-red crystals of mer$\left[\mathrm{Mn}(\mathrm{CO})\left(\mathrm{CN}^{\mathrm{t}} \mathrm{Bu}\right)_{3}\left({ }^{\mathrm{t}} \mathrm{Bu}-\mathrm{DAB}\right)\right] \mathrm{ClO}_{4}(14 \mathrm{a})$ (yield 6%).
(B) From cis,cis- $\left.\left[\mathrm{Mn}(\mathrm{CO})_{2}\left(\mathrm{CN}^{t} \mathrm{Bu}_{2}\right)^{(}{ }^{t} \mathrm{Bu}-\mathrm{DAB}\right)\right] \mathrm{ClO}_{4}(11 \mathrm{a})$. A mixture of cis,cis$\left[\mathrm{Mn}(\mathrm{CO})_{2}\left(\mathrm{CN}^{\mathrm{t}} \mathrm{Bu}\right)_{2}\left({ }^{\mathrm{t}} \mathrm{Bu}-\mathrm{DAB}\right)\right] \mathrm{ClO}_{4}$ (lla) $(0.20 \mathrm{~g}, 0.37 \mathrm{mmol}), \mathrm{ONMe}_{3}(0.036 \mathrm{~g}$, $0.48 \mathrm{mmol})$, and and $\mathrm{CN} ' \mathrm{Bu}(0.063 \mathrm{~g}, 0.76 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(30 \mathrm{~cm}^{3}\right)$ was stirred for 3 days at room temperature. After removal of the solvent, the residue was washed with light petroleum and the crude product recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /light petroleum to give first 13 a (42%) and then 14 a (9%).

Preparation of fac-[$\left.\mathrm{Mn}(\mathrm{CO})\left(\mathrm{CN}^{t} \mathrm{Bu}\right)_{3}\left(\mathrm{tmed}^{2}\right)\right] \mathrm{ClO}_{4}(13 \mathrm{~b})$

(A) From fac-[$\mathrm{Mn}(\mathrm{CO})_{3}\left(\mathrm{CN}^{\dagger} \mathrm{Bu}\right)($ tmed $\left.)\right] \mathrm{ClO}_{4}(8 b)$. To a solution of fac$\left[\mathrm{Mn}(\mathrm{CO})_{3}\left(\mathrm{CN}^{\mathrm{t}} \mathrm{Bu}\right)(\right.$ tmed $\left.)\right] \mathrm{ClO}_{4}(8 \mathrm{~B})(0.20 \mathrm{~g}, 0.46 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(30 \mathrm{~cm}^{3}\right)$ were added $\mathrm{ONMe}_{3}(0.086 \mathrm{~g}, 1.15 \mathrm{mmol})$ and CN 'Bu $(0.136 \mathrm{~g}, 1.63 \mathrm{mmol})$, and the mixture was stirred at room temperature for 15 days. The solution was then filtered to remove the insoluble decomposition products, and the solvent then evaporated off and the residue washed with light petroleum. Recrystallization of the crude
product from $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O}$ gave first yellow-orange crystals of the $13 \mathrm{~b}(35 \%)$ and then mixtures of 13 b and 14 b
(B) From cis,cis-[$\mathrm{Mn}(\mathrm{CO})_{2}\left(\mathrm{CN}^{t} \mathrm{Bu}\right)_{2}$ (tmed)]ClO${ }_{4}$ (llb) . A mixture of cis,cis$\left[\mathrm{Mn}(\mathrm{CO})_{2}\left(\mathrm{CN}^{\mathrm{t}} \mathrm{Bu}\right)_{2}\left(\right.\right.$ tmed $\left.^{2}\right) \mathrm{ClO}_{4}(11 \mathrm{~b})(0.20 \mathrm{~g}, 0.41 \mathrm{mmol})$, and $\mathrm{CN}^{\mathrm{t}} \mathrm{Bu}(0.063 \mathrm{~g}$, 0.76 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(30 \mathrm{~cm}^{3}\right)$ was stirred for 10 days at room temperature. The solution was evaporated to dryness and the residue was washed with light petroleum. The crude product was recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ light petroleum to give mainly 13b (37\%).

It should be noted that in this reaction the presence of ONMe_{3} is unnecessary.

Acknowledgements

We thank D.G. I.C.Y.T. for financial support and Prof. G.A. Carriedo for valuable discussions.

R eferences

1 M. Vivanco, Doctoral Thesis. Unpublished results.
2 R. Usón, V. Riera, J. Gimeno and M. Laguna, Transition Met. Chem., 2 (1977) 123.
3 F.J. Garcia Alonso, V. Riera, F. Villafañe and M. Vivanco, J. Organomet. Chem., 276 (1984) 39.
4 M.L. Valin, D. Moreiras, X. Solans, M. Font-Altaba, J. Solans, F.J. Garcıa Alonso, V. Riera and M. Vivanco, Acta Cryst., C, 41 (1985) 1312.
5 F.J. Garcia Alonso, V. Riera and M. Vivanco, J. Organomet. Chem., 321 (1987) C30.
6 (a) Y.-L. Shi, Y.-C. Gao, Q.-Z. Shi, D.L. Kershner and F. Basolo, Organometallics, 6 (1987) 1528; (b) Y.-C. Gao, Q.-Z. Shi, D.L. Kershner and F. Basolo, Inorg. Chem., 27 (1988) 188.

7 J.D. Atwood and T.L. Brown, J. Am. Chem. Soc., 98 (19\%) 3160.
8 P.O. Nubel, S.R. Wilson and T.L. Brown, Organometallics, 2 (1983) 515.
9 F.J. Garcia Alonso, V. Riera, M.L. Valin, D. Moreiras, M. Vivanco and X. Solans, J. Organomet. Chem., 326 (1987) C71.
10 L.M. Staal, A. Oskam and K. Vrieze, J. Organomet. Chem., 170 (1979) 235.
11 A.C. Cope, R.A. Pike and C. Spencer, J. Am. Chem. Soc., 75 (1953) 3212.
12 P. Weber, G.W. Gobel and I.K. Ugi, Angew. Chem., Int. Ed. Engl., 11 (1972) 530.
13 H. tom Dieck and I.W. Renk, Chem Ber., 104 (1971) 92.

[^0]: * It should be pointed out that the spectrum of the mixture obtained by adding ONMe_{3} to fac$\left[\mathrm{Mn}(\mathrm{CO})_{3}\left(\mathrm{CN}^{\mathrm{t}} \mathrm{Bu}\right)(b i p y)\right] \mathrm{ClO}_{4}$ also shows a very small peal' at 1.22 ppm . This signal probably corresponds to more substituted species, such as cis,cis-[$\left.\mathrm{Mn}(\mathrm{CO})_{2}\left(\mathrm{CN}^{t} \mathrm{Bu}\right)_{2}(\mathrm{bipy})\right] \mathrm{ClO}_{4}$ or fac$\left[\mathrm{Mn}(\mathrm{CO})\left(\mathrm{CN}^{\mathrm{t}} \mathrm{Bu}\right)_{3}(\mathrm{bipy})\right] \mathrm{ClO}_{4}$, which are always detected by infrared spectroscopy. It has not been possible to avoid these impurities because of the instability of the diearbonyl complexes 2.

[^1]: * It is possible that small amounts of $\left[\mathrm{Mn}(\mathrm{CO})_{2}\left(\mathrm{CN}^{2} \mathrm{Bu}\right)\left(\mathrm{ONMe}_{3}\right)\left(\mathrm{N}^{\prime}-\mathrm{N}^{\prime}\right)\right] \mathrm{ClO}_{4}$ were also formed, since the reaction was carried out in presence of an excess of $\mathrm{ONMe}_{3}[3,8]$.

